台中市 Proton Therapy in Tai 素お

*Chien-Yi Yeh, Ji-Hong Hong

*葉健-洪志宏 Chang Gung Memorial Hospital at Lin-Kou, Taiwan 林口長庚紀念醫院

OCPA2010 at Beijing, China Aug. 5, 2010

翻果

台中

a2

**

台南

南市

E TOP

10 12

Outline

- 1. The principle of proton radiotherapy
- 2. Introduction of the current medical environment in Taiwan
- 3. Preview of radiotherapy in Taiwan
- 4. The proton project at CGMH in Taiwan
- 5. Conclusion

The principle of proton radiotherapy

Clinical Rationale for Advanced Beam Modalities for Radiation Therapy

To improve local-regional control through dose escalation

to improve overall survival

To reduce normal tissue complications

to improve quality of life

To reduce treatment time/cost

Particles used in radiotherapy

Photon Electron Neutron Proton Heavy charged particles

Type of radiation

Direct ionization radiation

electron beam

*proton beam

helium carbon neon

Silicon

Charged particle

Interaction with matter in physics

Linear Energy Transfer (LET) Related to mass, energy and charge of particle

LET = Average energy deposited per unit length of track (keV/μm)

 Track Average
 0 0000
 0 0 0 0000
 0 0 0000
 0 0 0000
 0 0 0000
 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Relative Biological effect (RBE)

RBE_t = D₂₅₀/D_t (same biological end-point of 250KV X-ray)

Oxygen enhancement ratio (OER)

- Oxygen is a powerful oxidizing agent and therefore acts as a radiosensitizer if it is present at the time of irradiation (within µsecs).
- Its effects are measured as the oxygen enhancement ratio (O.E.R.)
 - O.E.R. = the ratio of doses needed to obtain a given level of biological effect under anoxic and oxic conditions.
 - O.E.R. = D(anox)/D(ox)
 - For low LET the O.E.R. is 2.5-3.0
 - For neutrons, O.E.R is about 1.6

RBE and OER as a function of LET

Linear Energy Transfer (LET keV/µm))

OER is the inverse of RBE because it depends on the indirect action of ionizing radiation

RBE and OER for different beam modalities

RBE	Radiation	OER
The bigher	X-ray	
the better	proton	
	Helium	
0	pion	
0	Carbon	
0	neutron	
0	Neon	
0	Silicon	O THe lower
	Argon	
.0 3.0 2.0 1.0 (j (<u> </u>

Biological Characteristics of Proton Beam

Reference	Tissue	Endpoint	Proton energy (MeV)	No. fractions	RBE
Tepper (1977)	Crypt cell	Survival	160	1	1.19
	Crypt cell	Survival	160	20	1.23
	Skin	Acute reaction	160	20	1.13
Urano (1980)	Fibrosarcoma	Survival	160	1-10	1.16
Urano (1984)	Mammary ca.	TCD 50/120	160	1	1.11
	Lens	Cataract	160	1	1.09
	Lung	LD 50/100	160	1	1.02
	Testis	Weight loss	160	1	1.23
	Tail vertebrae	Growth	160	1	1.32
Anso(1985)	Fibrosarcoma	Survival	70	1	1.06(1.01-1.12)
	Fibrosarcoma	Survival	2.50	1	1.06(1.03-1.09)
Tatsuzaki(1993)	Mouse	LD 50/30	2.50	1	1.09
	Skin	Contraction	250	10	1.03

Table 2: RBE values of modulated proton beams at the Bragg peak compared to ⁶⁰Coⁱⁱⁱ.

Averaging RBE for proton =1.1

Physical Characteristics of Proton Beam

Why use proton?

No biological advantage: RBE: 1.0-1.2

Mainly physical advantages: Bragg Peak and Spread of Bragg peak

Abbreviated History of Protons

- 1919 Rutherford proposed existence of protons
- 1930 E. O. Lawrence built first cyclotron
- 1946 Robert Wilson proposed proton therapy
- 1955 Tobias et al treated patients at LBL
- 1961 Kjellberg et al treated patients at HCL
- 1972 MGH received first NCI grant for proton studies at HCL
- 1991 First hospital-based proton facility at LLUMC
- 2006 28 facilities worldwide treating patients; over 55,000 patients treated with protons.

How about the heavy ion?

RBE significantly varied with depth.

Use physical dose to compensate the biological variation.

Biological dose as the prescribed dose

Why uses heavy ion?

- 1. Bragg peak & Spread of Bragg Peak (SOBP)
- 2. High RBE
- 3. Biological as well as physical advantage

But:

- 1. Tail dose –very high RBE
- 2. RBE varies with energy and depth
- 3. Limited facility experimental
- 4. Expensive

History of heavy ions

	1946	R.R. Wilson, Radiology 47,487 "potential benefits of heavy charged particles in radiotherapy"						
	1957 - 92	⁴ He	184-inch SC	Berkeley	<u>patients</u> 2054			
	1975 - 92	²⁰ Ne	BEVALAC	Berkeley	433			
Current ion-beam facilites:								
	1994	¹² C	HIMAC	Chiba	1800			
	1997	¹² C	SIS-18	Darmstadt	245			
	2003	¹² C	HIBMC	Hyogo	30			

250 MeV synchrotron ring 7 MeV Linac injector

Typical Accelerators used in proton therapy facilities

Superconducting Cyclotron

Cyclotron

- 1. Fix time/per cycle, with increasing diameter to comply with the increasing speed of particle.
- 2. Continuous beam, not pulse. High output and dose rate.
- 3. Beam at the outlet: fixed energy.
- 4. Adjust energy by beam degrader.
- 5. Relatively more radioactivity of contamination.
- 6. Stable output, more suitable for pencil beam scanning.

Synchrotron

- 1. Fix diameter, with increasing the speed of changes of magnetic field to comply with the increasing speed of particle.
- 2. Pulse beam, not continuous. lower output and dose rate.
- **3.** Beam at the outlet: variable energy.
- 4. Relatively more radioactivity of contamination.
- 5. Relatively not stable within a pulse, more difficult in pencil beam scan.

Basic systems for particle facility

Accelerator system

Beam transport system

Beam delivery system

Patient positioning system

Treatment planning system

The Cost of a Proton Facility

The building/shielding – US\$ 40million

The accelerator – US\$ 10-30million

The gantries/others - US\$ 30million

The cost of a Carbon facility will be 2-3 times more!

Dose comparison between photon and proton

6 MV X-rays

Protons

Dose comparison between photon and proton

Photon IMRT

Proton IMPT

© Jan Wilkens, DKFZ

Intensity Modulation Proton Thearpy (IMPT)

© Alex Trofimov, MGH

Medulloblastoma of Child

Photon

Proton

History: 1954-now Patients: > 77,000 patients

- o Uveal Melanoma(眼黑色素瘤)
 - 5y Local Control Rates 96%
- Skull Base Tumor (Chordoma, Chondrosarcoma)(髗底瘤)
 - 5y Local Control Rates 65-91%
- o Stage I Non-Small Cell Lung Cancer (肺癌)
 - 2y Survival Rates 75-86%
- o Prostate Cancer(攝護腺癌)
 - 5y Local Control Rates 95%
- o Hepatocellular Carcinoma(肝癌)
 - 3y Survival Rates 49%

Proton Therapy

Pre-PBT

Post-76 GyE PBT

67y F, Hepatocellular Carcinoma

Proton Therapy

Pre-PBTIsodose CurvePost-65 GyE PBT48y F, Ethmoid Sinus CancerNo visual weakness, no brain damage

Proton Therapy

Does Taiwan need particle facility?

If need, how many is necessary?
Geography of Taiwan 台中市 台中

....

AR

宜果

花蓮

菌果

南投

台湾

é 🕷

R IL

台南

高速市

台南市

高粱

194

36,000 sq meter Area~ Population~ 23,000,000

Preview of radiotherapy in Taiwan

Leading Causes of Death in Taiwan, 2009

Rank	Cause of Death	No of death	Death rate per 100,000 population
1	Malignant neoplasms	39,917	173
2	Heart disease	15,058	65
3	Cerebrovascular disease	10,370	45
4	Pneumonia	8,381	36
5	Diabetes mellitus	8,239	36
6	Accidents and adverse effects	7,387	32
7	Chronic respiratory disease	4,972	22
8	Chronic liver disease and cirrhosis	4,972	22
9	Suicide	4,120	18
10	Nephritis, nephrotic syndrome and nephrosis	3,977	17
	Total	107,392	465

Leading Causes of Cancer Death in Taiwan, 2009

Rank	Cause of Death	No of death	Death rate per 100,000 population
1	lung cancer	7,943	34
2	liver cancer	7,744	34
3	colorectal cancer	4,551	20
4	female breast cancer	1,597	7
5	stomach cancer	2,275	10
6	oral cavity cancer	2,235	10
7	prostate cancer	918	4
8	esophageal cancer	1,477	6
9	pancreatic cancer	1,477	6
10	cervical cancer	639	3
	All other causes	9,061	39
	Total	39,917	173

Figure 3-10 Long-term trends of standardized incidence rates and mortality rates for all cancers in Taiwan

International Comparison of Standardized Mortality Rates Per 100,000 people Due to Cancer

	Taiwan	South Korea	Japan	Singapore	UK	USA	Australia
1992	108	117	108	132	145	132	124
1993	111	122	106	129	142	132	124
1994	112	125	106	132	139	131	126
1995	120	123	111	131	137	130	121
1996	126	119	111	128	136	128	121
1997	127	119	109	128	133	126	118
1998	123	111	109	118	132	124	117
1999	121	115	108	116	129	123	114
2000	124	118	106	114	126	121	112
2001	125	116	105	112	127		111
2002	126	119	102		126		

By 1976 W.H.O. World Standard Population as the Standard

Cancer prevention and control in Taiwan

EUREAU OF HEALTH PROMOTION Annual Report

Table 3-8 Screening Results

ltem	Subject	Screening Policy	2008 Screening Results
Cervical cancer	Women over 30 years old	At least one Pap smear every three years	 56% of women aged 30-69 had a Pap smear within three years 70% of women interviewed by telephone had a Pap smear within three years
Breast cancer	Women between 50-69 years old	One mammography every two years	12% of women aged 50-69 had a mammography within two years
Oral cancer	Betel quid chewers or smokers over 18 years old	Oral visual inspection	25% of betel quid chewers or smokers over 18 years old had an oral visual checks inspection within two years
Colorectal cancer	People between 50-69 years old	One fecal occult blood test every two years	10% of people aged 50-69 had a fecal occult blood test within two years

Why need more radiotherapy facilities ?

The cancer incidence is predicted by WHO(1995) to increase to approximately 15 million new cases by the year 2015. About 50% of cancer patients still require radiation treatment, either curative or palliative. The need for rapid worldwide expansion of radiation treatment technology demands adequate resources, including the creation of new treatment facilities, new

technology, well trained medical personnel.

Preview of radiotherapy in Taiwan

Radiotherapy facility in Taiwan

Preview of radiotherapy in Taiwan

210 Radiation oncology attending physicians

120 Medical physicists

60 Resident doctors

The first proton project in Taiwan

台灣的第一步(部)

New Proton Center of Chang Gung Memorial Hospital

Proton Therapy in Taiwan

Chang Gung Memorial Hospital

Proton Therapy System (PTS) for CGMH

Experimental Beam Port

Wobbling Nozzle with Fine Pitch Multi Leaf Collimator

Pencil Beam Scanning Dedicated Nozzle

Contracted in June, 2008

- 1 cyclotron, 4 rotating gantries, and 1 experimental port system
- 2 wobbling systems and 2 pencil beam scanning dedicated systems
- Advanced equipment: Robotic couch, DR systems, respiration gating systems, and Multi-leaf collimators

230 MeV Cyclotron with Oil-Free Cryopump

Clinical Specifications of Proton therapy at CGMH in Taiwan

ltem	Wobbling Nozzle	Pencil Beam Scanning Nozzle		
Max. Field Size	25 cm x 25 cm (w/o MLC)	40 cm x 30 cm (L x W)		
	20 cm x 20 cm (with MLC)			
Max. Range (Energy)	32 g/cm ² (230 MeV) without scatterer	32 g/cm² (230 MeV)		
Min. Range (Energy)	4 g/cm2 (70 MeV)			
Energy Steps	Continuous from 230 MeV to70 MeV			
Range Modulation	Steps of 1g/cm2 by ridge filters	Steps of 0.2 g/cm2		
Dose Uniformity	\pm 2.5% over 80% of field size	\pm 2.5% over 40 cm x 30 cm (comformity)		
Average Dose Rate	1 Gy/min/liter (regardless of depth and field size)			

230 MeV Sumitomo Cyclotron

Energy Selection System (ESS)

Beam Transport System

Quadrupole Magnet

Requirement for beam delivery room switching time < 2 sec

Changed Block Magnets to Laminated Magnets

Magnet Shop in SHI

1st and 2nd Treatment Room: Wobbling Nozzle

Multi Leaf Collimator

Patient Snout

Radiation Field Formation by Collimator and Compensator

3rd and 4th Treatment Room: Pencil Beam Scanning Nozzle

Continuous Line Scanning

- Continuous line scanning is realized by two X-Y scanning magnets. The power supplies of scanning magnets can generate output current with fast time response.
- - scanning speed : 10mm/ms
- - response of velocity change : < 1ms

Scanning pattern for uniform field

Scanned field measured with a fluorescent plane + CCD camera

Maximum Field Size

Maximum field of $30cm(X) \times 40cm(Y) \times 28cm(SOBP)$ Field uniformity of $\pm 2.5\%$ was confirmed at 230 MeV

Dose at the center of SOBP (X-direction)

Dose at the center of SOBP (Y-direction) Depth dose with SOBP=28cm (at beam center)

Field Evaluation by Gamma Index

 Gamma index evaluation at 3%/3mm has been done for the uniform and intensity-modulated 2D fields, which were measured at the Bragg peak using 230MeV beam.

1) Uniform field

Field Evaluation by Gamma Index

1) Uniform field

100% of evaluation points have passed the criterion of gamma index <1.0.

Intensity Modulation by Scanning Speed

- Intensity modulation is done by
 - changing the scanning speed (high speed for low dose)
 - keeping the beam current constant in each layer

Dose simulation of two steps pattern

Field Evaluation by Gamma Index

2) Intensity modulation field

Field Evaluation by Gamma Index

2) Intensity modulation field

99.7% of evaluation points have passed the criterion of gamma index <1.0.

Patient Positioning Verification System

DR System with Cone Beam CT Function for Easy and Accurate Patient Positioning

- DR system and Patient Positioning Verification System (PPVS) make Cone Beam CT (CBCT) image.
- PPVS also provides high speed and high accuracy 3D-3D image matching to correct the error of patient set-up.

Positioning Accuracy: < 0.5 mm

Accurate Irradiation for Moving Tumor by Respiration Gating System

Respiratory-gated irradiation can be made by Respiration Gating System with laser sensor and DR system.

Example of gating display on PC
Project Schedule

	2010	2011	2012	2013
TFDA Q	SD Product R	egistration	Site Test	Human Tes
AEC	Radiation Shiel	ding		Site Test
Building construction				
Manufacturing				
Installation				
Commissioning				

Manufacturing at Niihama Factory in Japan

230 MeV Cyclotron manufactured at Sumitomo Niihama Factory

Major and critical components are designed and manufactured in Sumitomo's own factory to maintain high quality, high reliability, high performance, low cost, and short delivery time.

Conclusion

- The therapeutic effects of proton therapy in many cancers have been well established.
- In Taiwan, <u>liver tumors and head and neck</u> tumors will be the tumors having greatest benefit.
- The indication covers different type of tumors, but main issue is the cost and cost/effectiveness.
- If one proton therapy treated around 1500 patients per year, Taiwan needs 2 or more proton therapy centers.

Taipei 101

Taiwan

508M

Thank you for your attention